A METHOD FOR PREDICTION OF PROMPT FISSION NEUTRON SPECTRA ### Anatoli F. Grashin and Michael V. Lepeshkin Moscow Engineering Physics Institute, Moscow 115409, USSR Abstract: Three-parameter formula for the prompt-fission-neutron integral spectrum is derived from a thermodynamical model. Two parameters, scission-neutron weight p=11% and anisotropy factor for accelerated fragments b=10%, are determined from experimental data, the same values being assumed for any type of fission. The thermodynamical theory provides the value of the third parameter, temperature τ , thus prognozing neutron spectrum and average energy with an error about 1%. (prompt fission neutrons, scission neutrons, anisotropy factor) ## The Thermodynamical Model Earlier/1/ authors suggested a formula for the prompt-fission-neutron integral spectrum with pre-equilibrium effects for fully accelerated fragments taken into consideration. The formula provides a good fit in the energy region $E \geqslant 1$ MeV, however theoretical curve is consistently lower than experimental points when $E \longrightarrow 0$ (see dashed line in fig.1). This discrepancy can be removed with scission-neutron-emission being taken into account within the framework of the same thermodynamical model. The scission-neutron effect is reported in refs./2,3/. Assuming the dependence of neutron emission on the angle 0 in the fission-fragment CMS to be $$1 + \beta \cos^2 \theta , \qquad (1)$$ we obtain for laboratory spectrum $$N(E) = (1-p_s)N(E; \mathcal{T}, \alpha, \beta, E_f) + p_s N(E; \mathcal{T}, \alpha_s, \beta \rightarrow 0, E_f \rightarrow 0), \qquad (2)$$ $$N(E; \mathcal{C}, \mathcal{L}, \theta, E_f) = N_0 (e^{-x} - e^{-y}) + \theta N_0 \Phi(E) / 4 E_f (1 + \theta/3)$$, $$\Phi(E) = \frac{\pi}{2d} \left[(x^2 + 2x + 2 - \lambda^2) e^{-x} - (y^2 + 2y + 2 - \lambda^2) e^{-y} \right] - 2(E - E_f/3)(e^{-x} - e^{-y}) + \frac{(E - E_f)^2}{\pi} \left\{ e^{-x} \left[E_1(x - \lambda) - E_1(y - \lambda) \right] - e^{x} \left[E_1(x + \lambda) - E_1(y + \lambda) \right] \right\}.$$ (3) Here $E_1(x) = \int_x^x e^{-\xi} d\xi/\xi$, $x^2 = d^2 + 2d(\sqrt{E} - \sqrt{E_f})^2/\tau$, $y^2 = d^2 + 2d(\sqrt{E} + \sqrt{E_f})^2/\tau$, $N_0^{-1} = 2(2d\tau E_f)^{1/2} K_1(d)$. Fig.1 Percentage deviations of the U-235(0.53 MeV) spectra from Maxwellian with T_M=1.321 MeV. Solid line corresponds to set 5 from Table 1, dashed line is obtained without scission-neutron emission/1/. Fig. 2 The same as in fig.1, but for Cf-252 (sf), T_M=1.42 MeV. Solid line corresponds to set 1 in Table 1, dashed - to set 2. Data: eref/4/, Δ ref./6/, ο ref./10/. Fig. 3 The same as in fig. 1, but for Pu-239(n,f) with $T_M=1.438$ MeV. Solid curve corresponds to set 7 in Table 1, dashed - to set 8. Data: \bullet ref./9/, \bullet ref./8/for $E \leqslant 0.525$ MeV and $E \geqslant 6.792$ MeV. A parameter $\rm p_{\rm s}$ in expression (2) is the scission-neutron weight, $\rm E_{\rm f}$ - is the fission-fragment kinetic energy per nucleon, pre-equilibrium parameters are functions of fragment mass number Λ and compound-nucleus mass number $\Lambda_{\rm F}$: $$L = L_0 A^{-1/2}$$, $A_S = A_0 A_F^{-1/2}$. (4) The first term in eq.(3) is the expression derived earlier/1/ for the spectrum. The CMS neutron anisotropy is described by the second term in eq.(3). Spectrum (2) is normalized to unity and corresponds to the mean neutron energy $$\langle E \rangle = (1 - p_s) [1.5 \text{T} K_2(\mathcal{L}) / K_1(\mathcal{L}) + E_f] +$$ $+ 1.5 p_s \text{T} K_2(\mathcal{L}_s) / K_1(\mathcal{L}_s)$, (5) # Analysis of Experimental Data The formulas derived were used to analyse data for Cf-252(sf)/4-6/, U-235+ n(0.53 MeV)/7/, Pu-239+n(0.53 and 0.215 MeV)/8,9/ with $d_0=303$ as the best fit to the experiment. The values of fit parameters \mathcal{T} , p_s , b are listed in Table 1, deviations of spectra(2) from Maxwellian distributions $N_M(E,T_M)$ with appropriate temperatures T_M are presented in figs.1--3. The spectrum of Cf-252(sf) which is obtained from a large body of experimental data over the wide energy interval 0.0003-28 MeV, gives the reliable indication of scission-neutron contribution and CMS neutron anisotropy. It is noteworthy that from the integral laboratory spectrum result the same parameters p_s and b, which were determined from difficult multi-parameter measurements in the CMS of fragments/3/. For the mean scission-neutron energy we have # $\langle E \rangle = 1.5 \text{ T K}_2(d_S) / K_1(d_S) = 1.46(5) \text{ MeV}$ that coinsides with the value 1.5(3) MeV in ref./3/. We performed also fitting data from ref./5/ which are a part of information utilized in ref./4/. This additional Table 1. Parameter sets for spectrum (2), with asterisk are the parameters not varied in fitting | N5 | experiment | æ
MeV | p _s % | b% | Efv
Mev | <e>
MeV</e> | y²/ DF | |----------|--------------------------------------|----------------------|-------------------------------|------------------------------------|------------|----------------------|------------------| | 1. | Cf-252(sf) /4,6/
Cf-252(sf) /5,6/ | 0.901(6) | 11.2(1.1)
10.3(1.2) | 10(3)
2(3) | 0.784 | 2.132(5)
2.134(6) | 0.43 | | 3•
1 | IL-225,m/0 52 HoW) /7/ | 0.905(3) | 11.2
10.3(1.8) | 10 [*]
10 [*] | 0.800 | 2.134(5)
2.021(8) | | | 5 • | U-235+n(0.53 MeV) /7/ | 0.824(3) | | 10* | 0.800 | 2.016(5) | | | 6. | Pu-239+n(0.215 MeV) /9/ | | 12.1(1.1) | 10* | 0.803 | 2.108(6) | - | | 7.
8. | Pu-239+n(0.53 MeV) /8/ | 0.879(3)
0.836(8) | 11.2
1.0(1.8) | 10 [*]
10(6) | 0.801 | 2.107(5)
2.115(8) |) 1.20
) 0.37 | | 9. | | 0.877(3) | 11.2* | 10* | | 2.102(5 | 1.40 | Table 2. Calculated parameters and mean energies (in MeV) for fission induced by thermal and reactor neutrons. For Pu-239(th) averaged values from analysis of data /8/ and /9/ are given. | nuclide | T(th) | Εş | <e></e> | T(2) | Εţ | <e></e> | |--|---------------------------|-------------------------|---------------------------|---|---|---| | Th-229
-232
U -233
-235
-236 | 0.751
0.795
0.803 | 0.775
0.800
0.802 | 1.88
1.97
1.985 | 0.786
0.803
0.830
0.833
0.837 | 0.771
0.774
0.796
0.794
0.794 | 1.93
1.96
2.02
2.025
2.03 | | -238
Np-237
Pu-239
-240
-241 | 0.82
0.875(3)
0.875 | 0.803
0.804
0.797 | 2.01
2.101(5)
2.095 | 0.845
0.845
0.899
0.901
0.900 | 0.794
0.795
0.795
0.784
0.789 | 2.045
2.045
2.13
2.125
2.13 | | -242
Am-241
Cm-245
Cf-249 | 0.906
0.935
0.973 | 0.805
0.791
0.786 | 2.15
2.185
2.24 | 0.894
0.93
0.96
1.00 | 0.792
0.796
0.785
0.782 | 2.12
2.18
2.22
2.28 | analysis provides the same values of $\mathbf{p}_{_{\mathbf{S}}}$ and <E> within errors - see sets 2,3 in Table 1. Thus $p_{_{\rm S}}$, <E> , and τ are not sensitive to experimental data change. However, the varying of parameter b is not worth when we have not got reliable information in the region 0 < E < 0.4 MeV. Data for U-235+n(0.53 MeV) and Pu-239+n(0.215 MeV) are well fitted with formula (2) and values $p_s=11.2\%$, b=10% which are obtained for Cf-252(sf). Data from ref./10/ have unreliable bump in the energy region E < 0.35 MeV(see fig. 2), and fitting with this bump would give a lowered mean energy $\langle E \rangle = 2.120$ MeV. A big dip at E=12 MeV in the spectrum from ref./8/ also may not be considered reliable, the dip having essential influence on the analysis of data. Fitting the data/8/ with fixed parameters (set 9 in Table 1) leads to a high value $\chi^2/DF=$ 1.4 because of points in the energy range E > 10 MeV, whereas $\chi^2/DF=0.7$ for E < 10 MeV. The fit is practically the same as for Knitter's data/9/, the curve passing through the dip region between the points from ref./8/ and ref./9/ - see solid line in fig. 3. Having extrapolated parameters in fig.3. Having extrapolated parameters \mathbb{N}^2 9 from Table 1 to the thermal fission, we obtain the mean energy $\langle E \rangle = 2.095(5)$ MeV which coincides with the value 2.087(15) MeV from ref./4/. ### Prediction of Spectra The results obtained indicate that two parameters p and b may be considered the same for any case of fission. A third parameter T is related to a temperature T from the thermodynamical fission model/11/ in the following manner: T=To+ $\ensuremath{\boldsymbol{\tau}}$. Substituting values of $\ensuremath{\boldsymbol{T}}$ obtained from fission-product mass distributions and using the approximation $$T_0 = 1.009 + 0.004(350 - A_F - Z_F) MeV, (6)$$ we can make spectrum prediction for arbitrary compound-nucleus ($\Lambda_{\underline{F}}$, $Z_{\underline{F}}$). The values of calculated parameters with errors $\Delta \tau \approx \Delta E_f \approx 0.01$ MeV, $\Delta < E > \approx 0.02$ MeV for some thermal- and reactor-neutron -induced reactions are listed in Table 2. For all the cases p_s =0.112 and b=0.1, and we can neglect a change in parameters(4) substituting $\alpha = 27.8$ and $\alpha_3 = 19.6$. Formu- $$=1.585$$ $+0.888$ E_{f} (7) la (5) can be written in the simple form with an accuracy about 0.001 MeV. Formulas (2),(3) are applicable in excitation energy region E* < 6 MeV where emission channel (n,nf) is closed. energies may be performed with derivatives $\Delta \Upsilon/\Delta E^* = 0.018 - 0.012$; $\Delta < E > /\Delta E^* = 0.027 - 0.014$ as in previous publications /1/. Transformation to different excitation # REFERENCES - A.F. Grashin: Atomnaya Energiya 58, 59(1985); Radiation Effects 93, 37 (1986) - P. Riehs: Acta Phys. Austr. <u>53</u>, 271 (1981) - 3. E.A. Seregina: Yadernaya Fizika <u>42</u>, 1337(1985) - 4. B.I. Starostov: VANT, Yadernye Konstanty, vypusk 3, 16(1985) 5. M.P. Poenitz: Proc. Int. Conf. Nucl. - Data Sci. Techn., Antwerp, 465(1982) 6. H. Marten: ibid., p.483 7. P.I. Johansson: Nucl. Sci. Eng. 62, 695(1977) - 8. idem; AERE-R-8636(Harwell, 1977), - App. A, tab. by J.M. Adams 9. H.-H. Knitter: ibid., tab. by J.M. Adams 10. J.M. Boldeman: Nucl. Sci. Eng. 93, 181(1986) - 11. A.F. Grashin: Izvestiya AN SSSR, ser. fiz. 49, 188(1985)